3.24 \(\int \frac{\sin (c+d x)}{x^2 (a+b x)} \, dx\)

Optimal. Leaf size=114 \[ -\frac{b \sin (c) \text{CosIntegral}(d x)}{a^2}+\frac{b \sin \left (c-\frac{a d}{b}\right ) \text{CosIntegral}\left (\frac{a d}{b}+d x\right )}{a^2}-\frac{b \cos (c) \text{Si}(d x)}{a^2}+\frac{b \cos \left (c-\frac{a d}{b}\right ) \text{Si}\left (x d+\frac{a d}{b}\right )}{a^2}+\frac{d \cos (c) \text{CosIntegral}(d x)}{a}-\frac{d \sin (c) \text{Si}(d x)}{a}-\frac{\sin (c+d x)}{a x} \]

[Out]

(d*Cos[c]*CosIntegral[d*x])/a - (b*CosIntegral[d*x]*Sin[c])/a^2 + (b*CosIntegral[(a*d)/b + d*x]*Sin[c - (a*d)/
b])/a^2 - Sin[c + d*x]/(a*x) - (b*Cos[c]*SinIntegral[d*x])/a^2 - (d*Sin[c]*SinIntegral[d*x])/a + (b*Cos[c - (a
*d)/b]*SinIntegral[(a*d)/b + d*x])/a^2

________________________________________________________________________________________

Rubi [A]  time = 0.349687, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 5, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.294, Rules used = {6742, 3297, 3303, 3299, 3302} \[ -\frac{b \sin (c) \text{CosIntegral}(d x)}{a^2}+\frac{b \sin \left (c-\frac{a d}{b}\right ) \text{CosIntegral}\left (\frac{a d}{b}+d x\right )}{a^2}-\frac{b \cos (c) \text{Si}(d x)}{a^2}+\frac{b \cos \left (c-\frac{a d}{b}\right ) \text{Si}\left (x d+\frac{a d}{b}\right )}{a^2}+\frac{d \cos (c) \text{CosIntegral}(d x)}{a}-\frac{d \sin (c) \text{Si}(d x)}{a}-\frac{\sin (c+d x)}{a x} \]

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]/(x^2*(a + b*x)),x]

[Out]

(d*Cos[c]*CosIntegral[d*x])/a - (b*CosIntegral[d*x]*Sin[c])/a^2 + (b*CosIntegral[(a*d)/b + d*x]*Sin[c - (a*d)/
b])/a^2 - Sin[c + d*x]/(a*x) - (b*Cos[c]*SinIntegral[d*x])/a^2 - (d*Sin[c]*SinIntegral[d*x])/a + (b*Cos[c - (a
*d)/b]*SinIntegral[(a*d)/b + d*x])/a^2

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 3297

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[((c + d*x)^(m + 1)*Sin[e + f*x])/(d*(
m + 1)), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rubi steps

\begin{align*} \int \frac{\sin (c+d x)}{x^2 (a+b x)} \, dx &=\int \left (\frac{\sin (c+d x)}{a x^2}-\frac{b \sin (c+d x)}{a^2 x}+\frac{b^2 \sin (c+d x)}{a^2 (a+b x)}\right ) \, dx\\ &=\frac{\int \frac{\sin (c+d x)}{x^2} \, dx}{a}-\frac{b \int \frac{\sin (c+d x)}{x} \, dx}{a^2}+\frac{b^2 \int \frac{\sin (c+d x)}{a+b x} \, dx}{a^2}\\ &=-\frac{\sin (c+d x)}{a x}+\frac{d \int \frac{\cos (c+d x)}{x} \, dx}{a}-\frac{(b \cos (c)) \int \frac{\sin (d x)}{x} \, dx}{a^2}+\frac{\left (b^2 \cos \left (c-\frac{a d}{b}\right )\right ) \int \frac{\sin \left (\frac{a d}{b}+d x\right )}{a+b x} \, dx}{a^2}-\frac{(b \sin (c)) \int \frac{\cos (d x)}{x} \, dx}{a^2}+\frac{\left (b^2 \sin \left (c-\frac{a d}{b}\right )\right ) \int \frac{\cos \left (\frac{a d}{b}+d x\right )}{a+b x} \, dx}{a^2}\\ &=-\frac{b \text{Ci}(d x) \sin (c)}{a^2}+\frac{b \text{Ci}\left (\frac{a d}{b}+d x\right ) \sin \left (c-\frac{a d}{b}\right )}{a^2}-\frac{\sin (c+d x)}{a x}-\frac{b \cos (c) \text{Si}(d x)}{a^2}+\frac{b \cos \left (c-\frac{a d}{b}\right ) \text{Si}\left (\frac{a d}{b}+d x\right )}{a^2}+\frac{(d \cos (c)) \int \frac{\cos (d x)}{x} \, dx}{a}-\frac{(d \sin (c)) \int \frac{\sin (d x)}{x} \, dx}{a}\\ &=\frac{d \cos (c) \text{Ci}(d x)}{a}-\frac{b \text{Ci}(d x) \sin (c)}{a^2}+\frac{b \text{Ci}\left (\frac{a d}{b}+d x\right ) \sin \left (c-\frac{a d}{b}\right )}{a^2}-\frac{\sin (c+d x)}{a x}-\frac{b \cos (c) \text{Si}(d x)}{a^2}-\frac{d \sin (c) \text{Si}(d x)}{a}+\frac{b \cos \left (c-\frac{a d}{b}\right ) \text{Si}\left (\frac{a d}{b}+d x\right )}{a^2}\\ \end{align*}

Mathematica [A]  time = 0.408894, size = 101, normalized size = 0.89 \[ \frac{b x \sin \left (c-\frac{a d}{b}\right ) \text{CosIntegral}\left (d \left (\frac{a}{b}+x\right )\right )+x \text{CosIntegral}(d x) (a d \cos (c)-b \sin (c))+b x \cos \left (c-\frac{a d}{b}\right ) \text{Si}\left (d \left (\frac{a}{b}+x\right )\right )-a d x \sin (c) \text{Si}(d x)-a \sin (c+d x)-b x \cos (c) \text{Si}(d x)}{a^2 x} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[c + d*x]/(x^2*(a + b*x)),x]

[Out]

(x*CosIntegral[d*x]*(a*d*Cos[c] - b*Sin[c]) + b*x*CosIntegral[d*(a/b + x)]*Sin[c - (a*d)/b] - a*Sin[c + d*x] -
 b*x*Cos[c]*SinIntegral[d*x] - a*d*x*Sin[c]*SinIntegral[d*x] + b*x*Cos[c - (a*d)/b]*SinIntegral[d*(a/b + x)])/
(a^2*x)

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 144, normalized size = 1.3 \begin{align*} d \left ({\frac{1}{a} \left ( -{\frac{\sin \left ( dx+c \right ) }{dx}}-{\it Si} \left ( dx \right ) \sin \left ( c \right ) +{\it Ci} \left ( dx \right ) \cos \left ( c \right ) \right ) }+{\frac{{b}^{2}}{d{a}^{2}} \left ({\frac{1}{b}{\it Si} \left ( dx+c+{\frac{da-cb}{b}} \right ) \cos \left ({\frac{da-cb}{b}} \right ) }-{\frac{1}{b}{\it Ci} \left ( dx+c+{\frac{da-cb}{b}} \right ) \sin \left ({\frac{da-cb}{b}} \right ) } \right ) }-{\frac{b \left ({\it Si} \left ( dx \right ) \cos \left ( c \right ) +{\it Ci} \left ( dx \right ) \sin \left ( c \right ) \right ) }{d{a}^{2}}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)/x^2/(b*x+a),x)

[Out]

d*(1/a*(-sin(d*x+c)/x/d-Si(d*x)*sin(c)+Ci(d*x)*cos(c))+b^2/d/a^2*(Si(d*x+c+(a*d-b*c)/b)*cos((a*d-b*c)/b)/b-Ci(
d*x+c+(a*d-b*c)/b)*sin((a*d-b*c)/b)/b)-b/d/a^2*(Si(d*x)*cos(c)+Ci(d*x)*sin(c)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (d x + c\right )}{{\left (b x + a\right )} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/x^2/(b*x+a),x, algorithm="maxima")

[Out]

integrate(sin(d*x + c)/((b*x + a)*x^2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.72095, size = 485, normalized size = 4.25 \begin{align*} \frac{2 \, b x \cos \left (-\frac{b c - a d}{b}\right ) \operatorname{Si}\left (\frac{b d x + a d}{b}\right ) +{\left (a d x \operatorname{Ci}\left (d x\right ) + a d x \operatorname{Ci}\left (-d x\right ) - 2 \, b x \operatorname{Si}\left (d x\right )\right )} \cos \left (c\right ) - 2 \, a \sin \left (d x + c\right ) -{\left (2 \, a d x \operatorname{Si}\left (d x\right ) + b x \operatorname{Ci}\left (d x\right ) + b x \operatorname{Ci}\left (-d x\right )\right )} \sin \left (c\right ) -{\left (b x \operatorname{Ci}\left (\frac{b d x + a d}{b}\right ) + b x \operatorname{Ci}\left (-\frac{b d x + a d}{b}\right )\right )} \sin \left (-\frac{b c - a d}{b}\right )}{2 \, a^{2} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/x^2/(b*x+a),x, algorithm="fricas")

[Out]

1/2*(2*b*x*cos(-(b*c - a*d)/b)*sin_integral((b*d*x + a*d)/b) + (a*d*x*cos_integral(d*x) + a*d*x*cos_integral(-
d*x) - 2*b*x*sin_integral(d*x))*cos(c) - 2*a*sin(d*x + c) - (2*a*d*x*sin_integral(d*x) + b*x*cos_integral(d*x)
 + b*x*cos_integral(-d*x))*sin(c) - (b*x*cos_integral((b*d*x + a*d)/b) + b*x*cos_integral(-(b*d*x + a*d)/b))*s
in(-(b*c - a*d)/b))/(a^2*x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin{\left (c + d x \right )}}{x^{2} \left (a + b x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/x**2/(b*x+a),x)

[Out]

Integral(sin(c + d*x)/(x**2*(a + b*x)), x)

________________________________________________________________________________________

Giac [C]  time = 1.27695, size = 3911, normalized size = 34.31 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)/x^2/(b*x+a),x, algorithm="giac")

[Out]

-1/2*(a*d*x*real_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2*tan(1/2*a*d/b)^2 + a*d*x*real_part(cos_in
tegral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2*tan(1/2*a*d/b)^2 + 2*a*d*x*imag_part(cos_integral(d*x))*tan(1/2*d*x)
^2*tan(1/2*c)*tan(1/2*a*d/b)^2 - 2*a*d*x*imag_part(cos_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c)*tan(1/2*a*d/b
)^2 + 4*a*d*x*sin_integral(d*x)*tan(1/2*d*x)^2*tan(1/2*c)*tan(1/2*a*d/b)^2 - b*x*imag_part(cos_integral(d*x +
a*d/b))*tan(1/2*d*x)^2*tan(1/2*c)^2*tan(1/2*a*d/b)^2 - b*x*imag_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2
*c)^2*tan(1/2*a*d/b)^2 + b*x*imag_part(cos_integral(-d*x - a*d/b))*tan(1/2*d*x)^2*tan(1/2*c)^2*tan(1/2*a*d/b)^
2 + b*x*imag_part(cos_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2*tan(1/2*a*d/b)^2 - 2*b*x*sin_integral(d*x)*t
an(1/2*d*x)^2*tan(1/2*c)^2*tan(1/2*a*d/b)^2 - 2*b*x*sin_integral((b*d*x + a*d)/b)*tan(1/2*d*x)^2*tan(1/2*c)^2*
tan(1/2*a*d/b)^2 + a*d*x*real_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 + a*d*x*real_part(cos_integr
al(-d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 - 2*b*x*real_part(cos_integral(d*x + a*d/b))*tan(1/2*d*x)^2*tan(1/2*c)^2
*tan(1/2*a*d/b) - 2*b*x*real_part(cos_integral(-d*x - a*d/b))*tan(1/2*d*x)^2*tan(1/2*c)^2*tan(1/2*a*d/b) - a*d
*x*real_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*a*d/b)^2 - a*d*x*real_part(cos_integral(-d*x))*tan(1/2*
d*x)^2*tan(1/2*a*d/b)^2 + 2*b*x*real_part(cos_integral(d*x + a*d/b))*tan(1/2*d*x)^2*tan(1/2*c)*tan(1/2*a*d/b)^
2 + 2*b*x*real_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c)*tan(1/2*a*d/b)^2 + 2*b*x*real_part(cos_integr
al(-d*x - a*d/b))*tan(1/2*d*x)^2*tan(1/2*c)*tan(1/2*a*d/b)^2 + 2*b*x*real_part(cos_integral(-d*x))*tan(1/2*d*x
)^2*tan(1/2*c)*tan(1/2*a*d/b)^2 + a*d*x*real_part(cos_integral(d*x))*tan(1/2*c)^2*tan(1/2*a*d/b)^2 + a*d*x*rea
l_part(cos_integral(-d*x))*tan(1/2*c)^2*tan(1/2*a*d/b)^2 + 2*a*d*x*imag_part(cos_integral(d*x))*tan(1/2*d*x)^2
*tan(1/2*c) - 2*a*d*x*imag_part(cos_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c) + 4*a*d*x*sin_integral(d*x)*tan(
1/2*d*x)^2*tan(1/2*c) + b*x*imag_part(cos_integral(d*x + a*d/b))*tan(1/2*d*x)^2*tan(1/2*c)^2 - b*x*imag_part(c
os_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 - b*x*imag_part(cos_integral(-d*x - a*d/b))*tan(1/2*d*x)^2*tan(1
/2*c)^2 + b*x*imag_part(cos_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 - 2*b*x*sin_integral(d*x)*tan(1/2*d*x)
^2*tan(1/2*c)^2 + 2*b*x*sin_integral((b*d*x + a*d)/b)*tan(1/2*d*x)^2*tan(1/2*c)^2 - 4*b*x*imag_part(cos_integr
al(d*x + a*d/b))*tan(1/2*d*x)^2*tan(1/2*c)*tan(1/2*a*d/b) + 4*b*x*imag_part(cos_integral(-d*x - a*d/b))*tan(1/
2*d*x)^2*tan(1/2*c)*tan(1/2*a*d/b) - 8*b*x*sin_integral((b*d*x + a*d)/b)*tan(1/2*d*x)^2*tan(1/2*c)*tan(1/2*a*d
/b) + b*x*imag_part(cos_integral(d*x + a*d/b))*tan(1/2*d*x)^2*tan(1/2*a*d/b)^2 + b*x*imag_part(cos_integral(d*
x))*tan(1/2*d*x)^2*tan(1/2*a*d/b)^2 - b*x*imag_part(cos_integral(-d*x - a*d/b))*tan(1/2*d*x)^2*tan(1/2*a*d/b)^
2 - b*x*imag_part(cos_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*a*d/b)^2 + 2*b*x*sin_integral(d*x)*tan(1/2*d*x)^2
*tan(1/2*a*d/b)^2 + 2*b*x*sin_integral((b*d*x + a*d)/b)*tan(1/2*d*x)^2*tan(1/2*a*d/b)^2 + 2*a*d*x*imag_part(co
s_integral(d*x))*tan(1/2*c)*tan(1/2*a*d/b)^2 - 2*a*d*x*imag_part(cos_integral(-d*x))*tan(1/2*c)*tan(1/2*a*d/b)
^2 + 4*a*d*x*sin_integral(d*x)*tan(1/2*c)*tan(1/2*a*d/b)^2 - b*x*imag_part(cos_integral(d*x + a*d/b))*tan(1/2*
c)^2*tan(1/2*a*d/b)^2 - b*x*imag_part(cos_integral(d*x))*tan(1/2*c)^2*tan(1/2*a*d/b)^2 + b*x*imag_part(cos_int
egral(-d*x - a*d/b))*tan(1/2*c)^2*tan(1/2*a*d/b)^2 + b*x*imag_part(cos_integral(-d*x))*tan(1/2*c)^2*tan(1/2*a*
d/b)^2 - 2*b*x*sin_integral(d*x)*tan(1/2*c)^2*tan(1/2*a*d/b)^2 - 2*b*x*sin_integral((b*d*x + a*d)/b)*tan(1/2*c
)^2*tan(1/2*a*d/b)^2 - a*d*x*real_part(cos_integral(d*x))*tan(1/2*d*x)^2 - a*d*x*real_part(cos_integral(-d*x))
*tan(1/2*d*x)^2 - 2*b*x*real_part(cos_integral(d*x + a*d/b))*tan(1/2*d*x)^2*tan(1/2*c) + 2*b*x*real_part(cos_i
ntegral(d*x))*tan(1/2*d*x)^2*tan(1/2*c) - 2*b*x*real_part(cos_integral(-d*x - a*d/b))*tan(1/2*d*x)^2*tan(1/2*c
) + 2*b*x*real_part(cos_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c) + a*d*x*real_part(cos_integral(d*x))*tan(1/2
*c)^2 + a*d*x*real_part(cos_integral(-d*x))*tan(1/2*c)^2 + 2*b*x*real_part(cos_integral(d*x + a*d/b))*tan(1/2*
d*x)^2*tan(1/2*a*d/b) + 2*b*x*real_part(cos_integral(-d*x - a*d/b))*tan(1/2*d*x)^2*tan(1/2*a*d/b) - 2*b*x*real
_part(cos_integral(d*x + a*d/b))*tan(1/2*c)^2*tan(1/2*a*d/b) - 2*b*x*real_part(cos_integral(-d*x - a*d/b))*tan
(1/2*c)^2*tan(1/2*a*d/b) - a*d*x*real_part(cos_integral(d*x))*tan(1/2*a*d/b)^2 - a*d*x*real_part(cos_integral(
-d*x))*tan(1/2*a*d/b)^2 + 2*b*x*real_part(cos_integral(d*x + a*d/b))*tan(1/2*c)*tan(1/2*a*d/b)^2 + 2*b*x*real_
part(cos_integral(d*x))*tan(1/2*c)*tan(1/2*a*d/b)^2 + 2*b*x*real_part(cos_integral(-d*x - a*d/b))*tan(1/2*c)*t
an(1/2*a*d/b)^2 + 2*b*x*real_part(cos_integral(-d*x))*tan(1/2*c)*tan(1/2*a*d/b)^2 - 4*a*tan(1/2*d*x)^2*tan(1/2
*c)*tan(1/2*a*d/b)^2 - 4*a*tan(1/2*d*x)*tan(1/2*c)^2*tan(1/2*a*d/b)^2 - b*x*imag_part(cos_integral(d*x + a*d/b
))*tan(1/2*d*x)^2 + b*x*imag_part(cos_integral(d*x))*tan(1/2*d*x)^2 + b*x*imag_part(cos_integral(-d*x - a*d/b)
)*tan(1/2*d*x)^2 - b*x*imag_part(cos_integral(-d*x))*tan(1/2*d*x)^2 + 2*b*x*sin_integral(d*x)*tan(1/2*d*x)^2 -
 2*b*x*sin_integral((b*d*x + a*d)/b)*tan(1/2*d*x)^2 + 2*a*d*x*imag_part(cos_integral(d*x))*tan(1/2*c) - 2*a*d*
x*imag_part(cos_integral(-d*x))*tan(1/2*c) + 4*a*d*x*sin_integral(d*x)*tan(1/2*c) + b*x*imag_part(cos_integral
(d*x + a*d/b))*tan(1/2*c)^2 - b*x*imag_part(cos_integral(d*x))*tan(1/2*c)^2 - b*x*imag_part(cos_integral(-d*x
- a*d/b))*tan(1/2*c)^2 + b*x*imag_part(cos_integral(-d*x))*tan(1/2*c)^2 - 2*b*x*sin_integral(d*x)*tan(1/2*c)^2
 + 2*b*x*sin_integral((b*d*x + a*d)/b)*tan(1/2*c)^2 - 4*b*x*imag_part(cos_integral(d*x + a*d/b))*tan(1/2*c)*ta
n(1/2*a*d/b) + 4*b*x*imag_part(cos_integral(-d*x - a*d/b))*tan(1/2*c)*tan(1/2*a*d/b) - 8*b*x*sin_integral((b*d
*x + a*d)/b)*tan(1/2*c)*tan(1/2*a*d/b) + b*x*imag_part(cos_integral(d*x + a*d/b))*tan(1/2*a*d/b)^2 + b*x*imag_
part(cos_integral(d*x))*tan(1/2*a*d/b)^2 - b*x*imag_part(cos_integral(-d*x - a*d/b))*tan(1/2*a*d/b)^2 - b*x*im
ag_part(cos_integral(-d*x))*tan(1/2*a*d/b)^2 + 2*b*x*sin_integral(d*x)*tan(1/2*a*d/b)^2 + 2*b*x*sin_integral((
b*d*x + a*d)/b)*tan(1/2*a*d/b)^2 - a*d*x*real_part(cos_integral(d*x)) - a*d*x*real_part(cos_integral(-d*x)) -
2*b*x*real_part(cos_integral(d*x + a*d/b))*tan(1/2*c) + 2*b*x*real_part(cos_integral(d*x))*tan(1/2*c) - 2*b*x*
real_part(cos_integral(-d*x - a*d/b))*tan(1/2*c) + 2*b*x*real_part(cos_integral(-d*x))*tan(1/2*c) - 4*a*tan(1/
2*d*x)^2*tan(1/2*c) - 4*a*tan(1/2*d*x)*tan(1/2*c)^2 + 2*b*x*real_part(cos_integral(d*x + a*d/b))*tan(1/2*a*d/b
) + 2*b*x*real_part(cos_integral(-d*x - a*d/b))*tan(1/2*a*d/b) + 4*a*tan(1/2*d*x)*tan(1/2*a*d/b)^2 + 4*a*tan(1
/2*c)*tan(1/2*a*d/b)^2 - b*x*imag_part(cos_integral(d*x + a*d/b)) + b*x*imag_part(cos_integral(d*x)) + b*x*ima
g_part(cos_integral(-d*x - a*d/b)) - b*x*imag_part(cos_integral(-d*x)) + 2*b*x*sin_integral(d*x) - 2*b*x*sin_i
ntegral((b*d*x + a*d)/b) + 4*a*tan(1/2*d*x) + 4*a*tan(1/2*c))/(a^2*x*tan(1/2*d*x)^2*tan(1/2*c)^2*tan(1/2*a*d/b
)^2 + a^2*x*tan(1/2*d*x)^2*tan(1/2*c)^2 + a^2*x*tan(1/2*d*x)^2*tan(1/2*a*d/b)^2 + a^2*x*tan(1/2*c)^2*tan(1/2*a
*d/b)^2 + a^2*x*tan(1/2*d*x)^2 + a^2*x*tan(1/2*c)^2 + a^2*x*tan(1/2*a*d/b)^2 + a^2*x)